Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого задания функции.
Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.
Например, такое задание:
Найти область определения функции:
на множестве положительных чисел.
Естественную область определения этой функции мы нашли выше. Эта область:
D(f)=(-∞ ; -1) ∪ (-1; 2] ∪ [6; +∞)
А теперь учитываем дополнительные ограничения. Слова "на множестве положительных чисел" означают, что иксы могут быть только положительные. Вместо этих слов может быть задано условие "где x>0", или "где х ∈ (0; +∞)". Если наложить это ограничение на ответ, получим новую область определения:
D(f)=(0; 2] ∪ [6; +∞)
Вот и все дела.
По теореме Пифагора:
Составим и решим систему уравнений
Из второго уравнения имеем, что
Случай 1. Если
Согласно теореме виета
Случай 2. Если
Согласно теореме Виета
Катеты прямоугольного треугольника равны 35 см и 12 см или 12 см и 35 см.
Периметр прямоугольного треугольника:
ответ: 84 см.