v - знак квадратного корня.
v(3x-2)< =x одз: 3x-2> =0; x> =2/3
в левой части неравенства стоит квадратный корень,который принимает только неотрицательные значения,поэтому правая часть неравенства тем более должна быть неотрицательной: x> =0.
возведем обе части в квадрат:
3x-2< =x^2
3x-2-x^2< =0
x^2-3x+2> =0
x^2-3x+2=0
d=(-3)^2-4*1*2=1
x1=(3-1)/2=1; x2=(3+1)/2=2
++
с учетом одз: x e [2/3; 1] u [2; + беск.)
подробнее - на -
Для того, чтобы найти значение выражения а * ( а - 2 ) - ( а - 1 ) * ( а - 3 ) при а = 0,25, сначала выражение упростим, а затем подставим известное значение и получим:
а * ( а - 2 ) - ( а - 1 ) * ( а - 3 ) = a * a - 2 * a - ( a ^ 2 - 3 * a - 1 * a + 3 * 1 ) = a ^ 2 - 2 * a - ( a ^ 2 - 3 * a - a + 3 ) = a ^ 2 - 2 * a - ( a ^ 2- 4 * a + 3 ) ;
Раскрываем скобки. Так как, перед скобками стоит знак минус, то при ее раскрытии, знаки значений меняются на противоположный знак. То есть получаем:
a ^ 2 - 2 * a - ( a ^ 2- 4 * a + 3 ) = a ^ 2 - 2 * a - a ^ 2 + 4 * a - 3 = - 2 * a + 4 * a - 3 = 2 * a - 3 = 2 * 1 / 4 - 3 = 1 / 2 - 3 = - 5 / 2 = - 2.5 ;
ответ: 2,5.
Объяснение:
положительные числа - числа большие нуля, а отрицательные числа - числа меньшие нуля.
При сложении положительного и отрицательного числа надо из модуля большего вычитается модуль меньшего и ставится знак большего модуля.
При умножении если количество отрицательных чисел нечетное, то ответ отрицательный, в обратном случае наоборот.