ответ: (1; -4).
Объяснение:
Для того, чтобы не выполняя построения найти координаты точек пересечения графиков линейных функций y = -5x + 1 и y = -4 составим и решим систему уравнений.
Система уравнений:
y = -5x + 1;
y = -4.
Значение переменной y у нас уже известно из второго уравнения системы. Теперь мы подставим в первое уравнение его и решим полученное уравнение относительно переменной x.
Система уравнений:
-4 = -5x + 1;
y = -4.
Решаем первое уравнение системы.
5x = 1 + 4;
5x = 5;
x = 5 : 5;
x = 1.
Система уравнений:
x = 1;
y = -4.
ответ: (1; -4).
Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.