При каких значениях параметра a: Имеет два корня ax²-(1-a)x-3=0
Решение: Квадратное уравнение ax²+bx+c=0 имеет два корня x1 и x2 если а≠0 и его дискриминант D = b²-4ac больше нуля или D>0
Найдем дискриминант
D =(1-a)² -4*a*(-3) =1-2a+a² +12a =a²+10a+1
Решим неравенство D > 0 a² + 10a + 1 >0 Разложим левую часть неравенства на множители решив квадратное уравнение a² + 10a + 1 = 0 D =10² - 4 =100-4 =96
Поэтому можно записать a² + 10a + 1 =(a+5+2√6)(a+5-2√6) Перепишем наше неравенство и решим методом интервалов (a+5+2√6)(a+5-2√6) >0
На числовой прямой отобразим нули квадратного уравнения и определим по методу подстановки (например при а=0 a² + 10a + 1=1>0) знаки левой части неравенства
+ 0 - 0 + -------------!---------------!----------- -5-2√6 -5+2√6 Поэтому неравенство a² + 10a + 1>0 при a∈(-∞;-5-2√6)U(-5+2√6;+∞)
Следовательно исходное квадратное уравнение ax²-(1-a)x-3=0 имеет два корня если a∈(-∞;-5-2√6)U(-5+2√6;0)U(0;+∞)
x^2+(m-3)x+m^2-6m-9.75=0 x^2+(m-3)x+m^2-6m+9-18.75=0 x^2+(m-3)x+(m-3)^2-18.75=0 D=(m-3)^2-4*((m-3)^2-18.75)=75-3*(m-3)^2=3*(5^2-(m-3)^2) решения действительны значит D>=0 значит -5 <= m-3 <= 5 значит -2 <= m <= 8 причем при m=-2 и m=8 имеем по одному корню вместо двух теперь т.Виетта x1+х2=-(m-3) x1*x2=(m-3)^2-18.75 x1^2+х2^2=(x1+х2)^2-2*x1*x2 = (m-3)^2-2(m-3)^2+2*18.75 = 37,5-(m-3)^2 поиск минимума функции f(m) = 37,5-(m-3)^2 на участке [-2;8] дает результат что 37,5-(m-3)^2 принимает максимальное значение при m=3 и равно 37.5 и что 37,5-(m-3)^2 принимает минимальное значение при m=-2 и m=8 и оно равно 13 заметим также что при m=-2 корень единственный х=-(m-3)/2=2,5; и сумма квадратов корней x^2=6,25 и при m=8 тоже корень единственный х=-(m-3)/2=-2,5; и сумма квадратов корней x^2=6,25 из вариантов m=-2 и m=8 выбираем максимальный m=8 - это ответ
Объяснение:
вот собственно говоря ответ на фото