1. Умножим все части двойного неравенства 1,7<√3<1,8 на √4=2: 1,7*2<√3*√4<1,8*2 3,4<√12<3,6 2. Перемножим данные двойные неравенства : 1,7*2,6<√3*√7<1,8*2,7 4,42<√21<4,86 Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные: -4,42>-√21>-4,86 или в более привычной форме -4,86<-√21<-4,42 3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42: 3,4-4,86<√12-√21<3,6-4,42 -1,26<√12-√21<-1,02.
11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a = = 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*) Заметим, что 1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9 2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a) Подставляем (*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a = = 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a = = 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) = = 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a = = 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 = = 10(sin^2 a - 1/10)^2 + 109/10 Минимальное значение квадрата равно 0, а всего выражения 109/10.
1,7*2<√3*√4<1,8*2
3,4<√12<3,6
2. Перемножим данные двойные неравенства :
1,7*2,6<√3*√7<1,8*2,7
4,42<√21<4,86
Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные:
-4,42>-√21>-4,86
или в более привычной форме
-4,86<-√21<-4,42
3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42:
3,4-4,86<√12-√21<3,6-4,42
-1,26<√12-√21<-1,02.