В решении.
Объяснение:
Расстояние между двумя пристанями равно 161,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 2,6 ч. лодки встретились. Скорость течения реки равна 2 км/ч.
Скорость лодки в стоячей воде равна?
Сколько километров до места встречи пройдёт лодка, плывущая по течению?
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки в стоячей воде.
х + 2 - скорость по течению.
х - 2 - скорость против течения.
2,6(х + 2) - расстояние по течению.
2,6(х - 2) - расстояние против течения.
По условию задачи уравнение:
2,6(х + 2) + 2,6(х -2) = 161,2
2,6х + 5,2 + 2,6х - 5,2 = 161,2
5,2х = 161,2
х = 161,2/5,2
х = 31 (км/час) - скорость лодки в стоячей воде.
31 + 2 = 33 (км/час) - скорость по течению.
33 * 2,6 = 85,8 (км) - пройдёт лодка, плывущая по течению.
31 - 2 = 29 (км/час) - скорость против течения.
29 * 2,6 = 75,4 (км) - пройдёт лодка, плывущая против течения.
Проверка:
85,8 + 75,4 = 161,2 (км), верно.
ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3