М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vitya123567
vitya123567
20.11.2022 15:23 •  Алгебра

Упражнения 35. Найдите координаты вершины параболы: 1) у = х^2 - 4x - 5
2) у = х^2 + 5х -1
3) y = -x^2 - 2x + 5

👇
Ответ:
Udhudjd
Udhudjd
20.11.2022

ответы на фотке, наверно я верно решила


Упражнения 35. Найдите координаты вершины параболы: 1) у = х^2 - 4x - 52) у = х^2 + 5х -13) y = -x^2
Упражнения 35. Найдите координаты вершины параболы: 1) у = х^2 - 4x - 52) у = х^2 + 5х -13) y = -x^2
Упражнения 35. Найдите координаты вершины параболы: 1) у = х^2 - 4x - 52) у = х^2 + 5х -13) y = -x^2
4,7(84 оценок)
Открыть все ответы
Ответ:
baikolepus
baikolepus
20.11.2022
Х+у=10
х³ + у³ = (х+у)(х²+ху+у²) = 10(х²+ху+у²)
чтобы сумма кубов была наименьшей, нужно найти минимум для выражения в скобках (т.к. 10 уже не изменится)))
х²+ху+у² = х²+2ху+у² - ху = (х+у)² - ху = 100 - ху = 100 - (10-у)у = 
= 100 - 10у + у²  это квадратный трехчлен (график -- парабола, ветви вверх))), своего минимума достигает в вершине параболы...
абсцисса вершины: у₀ = -b / (2a) = 10/2 = 5
тогда х = 10-у = 5
другой вариант рассуждений:
х = 10-у
х³ + у³ = (10-у)³ + у³ = 10³ - 300у + 30у² - у³ + у³ = 30у² - 300у + 1000
вновь парабола, ветви вверх, минимум в вершине для 
у₀ = -b / (2a) = 300/(2*30) = 10/2 = 5
тогда х = 5 тоже))
4,5(89 оценок)
Ответ:
mokrotynp0934y
mokrotynp0934y
20.11.2022

№1.

\tt \displaystyle g(x)=\frac{x-5}{x+3}

\displaystyle g(-2)=\frac{-2-5}{-2+3} =\frac{-7}1 =-7\\ \\ g(2)=\frac{2-5}{2+3} =\frac{-3}{5} ^{(2}=\frac{-6}{10} =-0,\! 6

№2.

\tt \displaystyle f(x)=\frac1{-3x+2}

\displaystyle f(x)=1\Rightarrow \frac1{-3x+2}=1\; \; |\cdot (-3x+2)\ne 0\\ \\ \begin{Bmatrix}1=-3x+2\\ -3x+2\ne 0\end{matrix} \quad \begin{Bmatrix}3x=1\ne 2\\ 3x\ne 2\qquad \end{matrix} \\ \\ x=\frac13

ответ: \tt \displaystyle x=\frac13

№3.

а)

f(x) = 19-2x;   D(f) = (-∞;+∞)

б)

g(x) = x+1;   D(g) = (-∞;+∞)

в)

y(x) = √x;   D(y) = [0;+∞)

г)

y = x²-4;   D(y) = (-∞;+∞)

Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).

№4.

а)

y = 37x+1;   E(y)=(-∞;+∞)

б)

y = -23;   E(y) = -23

в)

y = x;   E(y) = (-∞;+∞)

г)

y = |x|;   E(y) = [0;+∞)

Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).

ответы на вопросы:

1. Графиком квадратичной функции является парабола.

2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: \tt \displaystyle x_0 =\frac{-b}{2a}, ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.

3. Направление ветвей зависит от старшего коэффициента.

Если a<0, то ветви направлены вниз;

Если a>0, то ветви направлены вверх.

4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет \tt \displaystyle x =\frac{-b}{2a}

5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.

Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).

Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.


Решите по , 9 класс. большое! ) номер 1. найдите g (-2) b g (2), если g (x)= x-5\x+3 номер 2. найдит
4,4(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ