М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
таир20
таир20
13.03.2022 15:08 •  Алгебра

Какое расстояние между двумя пешеходами ?


Какое расстояние между двумя пешеходами ?

👇
Ответ:
REDbad5
REDbad5
13.03.2022

S1 = ua км первый пешеход

S2 = va км второй пешеход

S = S1 + S2 = a(u + v) - расстояние

S = 3 * (4 + 5) = 27 км - расстояние между пешеходами при данных u, v и a

ответ: S = a(u + v); при u = 5; v = 4; a = 3; S = 27 км

4,4(89 оценок)
Открыть все ответы
Ответ:
tanaletinaaaaa
tanaletinaaaaa
13.03.2022

Преобразуем 2 уравнение:

(x+y)^2-(x+y)=0

(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0

в 1 уравнении делаем замену:

xy=t

получим:

t^2+2t=3

t^2+2t-3=0

D=4+12=16=4^2

t1=(-2+4)/2=1

t2=(-2-4)/2=-3

система разделится на 4 системы

1) xy=1

x+y=0

x=-y

-y^2=1

y^2=-1

y - нет решений

2) xy=1

x+y-1=0

x=1-y

(1-y)y=1

-y^2+y-1=0

y^2-y+1=0

D<0

y - нет корней

3) xy=-3

x+y=0

x=-y

-y^2=-3

y^2=3

y1=sqrt(3)

y2=-sqrt(3)

x1=-sqrt(3)

x2=sqrt(3)

4) xy=-3

x+y-1=0

x=1-y

(1-y)*y=-3

-y^2+y=-3

-y^2+y+3=0

y^2-y-3=0

D=1+12=13

y3=(1+sqrt(13))/2

y4=(1-sqrt(13))/2

x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2

x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2

ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)

Объяснение:

вродебы так

4,6(80 оценок)
Ответ:
deemetraa
deemetraa
13.03.2022
Обозначим искомое число как n^3, по условию n^3=13p+1. Перенесём единицу в левую часть и разложим разность кубов на множители:
(n-1)(n^2+n+1)=13p

Понятно, что n2, тогда обе скобки-сомножителя - натуральные числа, большие 1. С другой стороны, произведение 13p представляется в виде двух натуральных сомножителей, больших единицы, единственным (с точностью до перестановок 13p=13\cdot p. Поэтому n-1, n^2+n+1 равны либо 13 и p, либо p и 13.

Случай 1. \begin{cases}n-1=13\\n^2+n+1=p\end{cases}
Из первого уравнения следует, что n=14, тогда после подстановки во второе уравнение находим p=14^2+14+1=211. 211 - действительно простое число, так что n=14 нас устраивает.

Случай 2. \begin{cases}n-1=p\\n^2+n+1=13\end{cases}
Тут всё немного сложнее: уравнение на n квадратное, а не линейное, как в первом случае. Упростив, получаем уравнение n^2+n-12=0, у которого только один натуральный корень n=3.
Подставляем в первое равенство: p=3-1=2 - простое число, так что и тут нас всё устраивает.

ответ. 14^3=2744, 3^3=27
4,4(74 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ