М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
asdfgh21
asdfgh21
28.01.2020 00:01 •  Алгебра

Скоротіть дріб
12с²-4с

3с-1

👇
Ответ:
Юлясруля
Юлясруля
28.01.2020

8/59 39437 мод а вп4779268пащщ

4,4(83 оценок)
Открыть все ответы
Ответ:
мик104
мик104
28.01.2020
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\
d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\
0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\
0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк
4,7(68 оценок)
Ответ:
Tiktak222
Tiktak222
28.01.2020
Омогите с алгеброй, умоляю
вычислите
а) 3arcctg (-√3/3) + 1/2arccos √2/2 =-3*π/3+1/2*π/4=-π+π/8=-7π/8
б) tg (arccos √3/2 - 1/2arcctg 1/√3)= tg(π/6-1/2*π/3)= tg0=0

решите уравнение
а) 2cos^2 x + 5sinx - 4 = 0
2(1- sin²x) + 5sinx - 4 = 0
-2 sin²x+ 5sinx-2=0
у= sinx- замена
-2у²+5у-2=0
Д=5²-4*(-2)*(-2)=9
х₁=-5+√9/2*(-2)=-5+3/-4=-2/-4=1/2
х₂=-5-√9/2*(-2)=-5-3/-4=-8/-4=2
sinx=1/2 либо sinx=2
х=(-1)ⁿπ/6+πn либо решений нет, т. к. -1≤ sinx≤1
ответ: х=(-1)ⁿπ/6+πn
б) sin^2 x + cosx sinx = 0
sin^2 x(1+ctgх) =0
sinx=0 либо сtgх=-1
х=πn либо х=-π/4+πn
найдите корни уравнения
cos(3x-pi/2)=1/2
sin3x=1/2
3х=(-1)ⁿπ/6+πn
х=(-1)ⁿπ/18+πn/3
n=4
х=(-1)⁴π/18+π4/3=25π/18
n=-3
х=(-1)⁻³π/18+π(-3)/3=-19π/18
принадлежащие интервалу (pi; 3pi/2]
4,5(77 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ