1. Область определения функции (-бесконечность;3) и (3;бесконечность) 2. Множество значений функции (-бесконечность2] [10; бесконечность) 3. Проверим является ли данная функция четной или нечетной: у(х) = (x^2-5)/(х-3) y(-х) = (x^2-5)/(-х-3) так как у(х) не =у(-х), и у(-х) не=-у(х), то данная функция не является ни четной ни нечетной. 4. Найдем промежутки возрастания и убывания функции и точки экстремума. y'(x) = (x^2-6x+5)/(x-3)^2; y'(x) = 0 (x^2-6x+5)/(x-3)^2=0 x^2-6x+5=0 х1=5; х2=1. Данные стационарные точки и точка разрыва, разбили числовую прямую на 4 промежутка Так как на промежутках (1;3) и (3;5) производная отрицательна, то на этих промежутках функция убывает Так как на промежутках (-бесконечность;1) и (2;бесконечность) производная положительна, то на этих прмежутках функция возрастает. х=5 точка минимума, у(5) = 10 х=1 точка максимума, у(1) = 2 5. Найдем точки перегиба функции и промежутки выпуклости: y"(x) = 8/(х-3)^3; y"(x)=0 8/(х-3)^3=0 уравнение не имеет корней. Так как на промежутке (3;бесконечность) вторая производная положительна, то график направлен выпуклостью вниз Так ак на промежутке (-бесконечность;3) вторая производная отрицательна то график направлен выпуклостью вверх. Точек перегиба функция не имеет. 6. Проверим имеет ли график функции асмптоты: а) вертикальные: Для этого найдем односторонние пределы в точке разрыва х=3 lim(x стремится к 3 по недостатку)((x^2-5)/(х-3)=-бесконечность lim(x стремится к 3 по избытку)((x^2-5)/(х-3)=бесконечность Следовательно прямая х=3 является вертикальной асимптотой. б) налонные вида у=кх+в: к=lim y(x)/x = lim(x стремится к бесконечности)((x^2-5)/(х(х-3))=1 в = lim (y(x)-kx) = lim ((x^2-5)/(х-3)-х)=lim(3x-5)/(x-3)=3 Cледовательно прямая у=х+3 является наклонной асимптотой. 7. Всё! Стройте график. Удачи!!
Будем расставлять сначала первого, потом смотреть куда можно поставить второго. Может быть 3 случая постановки первого короля: 1)в углу 2) "у бортика" 3) "центральная часть" 1) Есть 4 угла. У каждом из них он будет бить 4 клетки => другому останется 64-4=60 вариантов. Итого в 1 п. 4*60=240 вариантов 2) "Бортовых" клеток - 4 * (8-2)=24 .Там король бьет 6 клеток => второму остается 64-6=58 вариантов Итого в п. 2 58*24=1392 Вариантов 3) "Центральных" (по сути всех остальных) клеток 6*6=36 штук Тогда второму короля остается 64-36=28 вариантов. Итого в п.3 28*36=1008 вариантов Тогда всего вариантов : 240+1392+1008=2640
Члены арифметической прогрессии обозначим An, геометрической Bn. Тогда имеем: 13A1+78d=130(из формулы суммы первых членов арифметической прогрессии Sn=((2A1+d(n-1))/2)*n), что равносильно A1+6d=10
A4=A1+3d=B1 A10=A1+9d=B1*q A7=A1+6d=B1*q^2
B1*q^2=10 B1+3d=10 B1+6d=B1*q
B1=10/q^2(Выражаем B1 из первого уравнения) B1=10-3d(Выражаем B1 из второго уравнения) 3d=10-B1(теперь 3d из второго) 3d=10-10/q^2(подставляем сюда значение B1 из первого) 10+3d=10/q(подставляем вместо B1 соответственно 10-3d и 10/q^2) 10+10-10/q^2=10/q 20-10/q^2-10/q=0 20q^2-10q-10=0 2q^2-q-1=0 D=1+8=9 q1=(1-3)/4=-1/2 q2=(1+3)/4=1 Зная q, можно найти все остальное: B1*q^2=10 B1=10/q^2 3d=10-B1 Для q=-1/2 B1=40, 3d=10-40=-30, d=-10 Для q=1 B1=10, 3d=10-B1=0, d=0. Так как нам известно что первый член арифметической прогрессии не равен второму, то корень q=1 не подходит (так как d=0). Значит, d=-10. Найдем A1. A1+3d=B1 A1-30=40 A1=70. ответ: A1=70.
1. Область определения функции (-бесконечность;3) и (3;бесконечность)
2. Множество значений функции (-бесконечность2] [10; бесконечность)
3. Проверим является ли данная функция четной или нечетной:
у(х) = (x^2-5)/(х-3)
y(-х) = (x^2-5)/(-х-3) так как у(х) не =у(-х), и у(-х) не=-у(х), то данная функция не является ни четной ни нечетной.
4. Найдем промежутки возрастания и убывания функции и точки экстремума.
y'(x) = (x^2-6x+5)/(x-3)^2; y'(x) = 0
(x^2-6x+5)/(x-3)^2=0
x^2-6x+5=0
х1=5; х2=1.
Данные стационарные точки и точка разрыва, разбили числовую прямую на 4 промежутка
Так как на промежутках (1;3) и (3;5) производная отрицательна, то на этих промежутках функция убывает
Так как на промежутках (-бесконечность;1) и (2;бесконечность) производная положительна, то на этих прмежутках функция возрастает.
х=5 точка минимума, у(5) = 10
х=1 точка максимума, у(1) = 2
5. Найдем точки перегиба функции и промежутки выпуклости:
y"(x) = 8/(х-3)^3; y"(x)=0
8/(х-3)^3=0
уравнение не имеет корней.
Так как на промежутке (3;бесконечность) вторая производная положительна, то график направлен выпуклостью вниз
Так ак на промежутке (-бесконечность;3) вторая производная отрицательна то график направлен выпуклостью вверх.
Точек перегиба функция не имеет.
6. Проверим имеет ли график функции асмптоты:
а) вертикальные: Для этого найдем односторонние пределы в точке разрыва х=3
lim(x стремится к 3 по недостатку)((x^2-5)/(х-3)=-бесконечность
lim(x стремится к 3 по избытку)((x^2-5)/(х-3)=бесконечность
Следовательно прямая х=3 является вертикальной асимптотой.
б) налонные вида у=кх+в:
к=lim y(x)/x = lim(x стремится к бесконечности)((x^2-5)/(х(х-3))=1
в = lim (y(x)-kx) = lim ((x^2-5)/(х-3)-х)=lim(3x-5)/(x-3)=3
Cледовательно прямая у=х+3 является наклонной асимптотой.
7. Всё! Стройте график. Удачи!!