в знаменателе развёрнута разность квадратов, свернуть:
= 2х/(х - у);
2) Умножение:
(х√у - у√у)/2 * 2х/(х - у)=
=[√у(х - у)]/2 * 2х/(х - у)=
=[√у(х - у) * 2х] / [2 * (х - у)]=
сократить (разделить 2 и 2 на 2, (х - у) и (х - у) на (х - у):
= х√у.
8. Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) Новый общий знаменатель для двух дробей это y в максимальной присутствующей степени, т.е. y^{4}. Тогда дополнительным множителем к первой дроби будет единица, а ко второй дроби y^{3}. Получается \frac{2x}{y^{4}} и \frac{3x^{3}}{y^{4}}. 2) Дополнительный множитель к первой дроби будет y, а ко второй a^{5}. Получается \frac{2by}{ya^{5}} и \frac{6a^{5}}{ya^{5}}. 3) Новый общий знаменатель для двух дробей будет это 6x^{2}y^{2}. Тогда дополнительный множитель к первой дроби будет 2x, а ко второй y. Получается \frac{7y}{6x^{2}y^{2}} и \frac{4x}{6x^{2}y^{2}}. 4) Новым общим знаменателем для двух дробей будет 7x(x+5). Тогда дополнительным множителем к первой дроби будет 7x, а ко второй (x+5). Получается \frac{28x}{7x(x+5)} и \frac{3x+15}{7x(x+5)}. 5) Т.к. новый общий знаменатель должен включать в себя все множители из обоих дробей, то он будет равен (3x-3y)(4x+4y). Из каждой скобки можно вынести общий множитель, перемножить их, а скобки свернуть по формуле "разность квадратов": (3x-3y)(4x+4y)=3(x-y)4(x+y)=12(x^{2}-y^{2}). ответ и будет являться новым общим знаменателем. Дополнительный множитель к первой дроби будет (3x-3y), а ко второй (4x+4y). Получается \frac{8x^{2}+8xy}{12(x^{2}-y^{2})} и \frac{9xy-9y^{2}}{12(x^{2}-y^{2})}. 6) Из знаменателя первой дроби вынесем общий множитель: 2a+2=2(a+1). Таким образом новый общий знаменатель будет равен 2(a+1). Дополнительный множитель к первой дроби будет 1, а ко второй 2. Получается \frac{a}{2(a+1)} и \frac{6}{2(a+1)}.
В решении.
Объяснение:
7. Упростить:
(х√у - у√у)/2 * [√х/(√х + √у) + √х/(√х - √у)]= х√у.
1) [√х/(√х + √у) + √х/(√х - √у)]=
общий знаменатель (√х + √у)(√х - √у), надписываем над числителями дополнительные множители:
=[(√х - √у) * √х + (√х + √у) * √х] / (√х + √у)(√х - √у)=
=(х - √ху + х + √ху) / (√х + √у)(√х - √у)=
в знаменателе развёрнута разность квадратов, свернуть:
= 2х/(х - у);
2) Умножение:
(х√у - у√у)/2 * 2х/(х - у)=
=[√у(х - у)]/2 * 2х/(х - у)=
=[√у(х - у) * 2х] / [2 * (х - у)]=
сократить (разделить 2 и 2 на 2, (х - у) и (х - у) на (х - у):
= х√у.
8. Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(63; 3√7)
3√7 = √63
3√7 = √9*7
3√7 = 3√7, проходит.
2) В(49; -7)
-7 = √49
-7 ≠ 7, не проходит.
3) С(0,09; 0,3)
0,3 = √0,09
0,3 = 0,3, проходит.
б) х∈ [0; 25]
y=√0 = 0;
y=√25 = 5;
При х∈ [0; 25] у∈ [0; 5].
в) Найдите значения аргумента, если у∈ [9; 17]
у = √х
9=√х х=9² х=81;
17=√х х=17² х=289.
При х∈ [81; 289] у∈ [9; 17].