М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ivan700076
Ivan700076
23.05.2021 04:35 •  Алгебра

Исследование функций и построение графиков


Исследование функций и построение графиков

👇
Открыть все ответы
Ответ:
olgagavrikova31
olgagavrikova31
23.05.2021
Верно.
Покажем, что любое натуральное число N можно представить в указанном виде (а значит, и отношение натуральных чисел будет представимо в таком виде).
Если N = 1, можно написать, например, N = 2! / 2!
По основной теореме арифметики любое натуральное число, большее 1, однозначно (с точностью до порядка сомножителей) представимо в виде произведения простых множителей:
N=p_{\alpha_1}^{\beta_1}p_{\alpha_2}^{\beta_2}\dots p_{\alpha_k}^{\beta_k}
(alpha - номер простого числа; все простые числа расположены в порядке возрастания)

Докажем требуемое утверждение индукцией по alpha_k.
База: Для alpha_k = 1 утверждение очевидно: первое простое число совпадает со своим факториалом: 2 = 2!
Переход. Пусть для всех alpha_k < m утверждение задачи выполнено. Пусть N = Q * p^l, причем номер p равен m и Q не делится на p.
1) Q по предположению представимо в нужном виде.
2) Заметим, что p = p! / (p-1)!. (p-1)! не содержит простых чисел с номерами, не меньших m, так что по предположению индукции представимо в виде дроби нужного вида. Тогда и p!/(p-1)! представимо в нужном виде.
3) Остается перемножить дробь для Q и l дробей для p.
Переход доказан.
4,8(84 оценок)
Ответ:
Camall
Camall
23.05.2021
А) да, может. Пример (на самом деле, единственный — с точностью до обратной перестановки) :
216, 252, 294, 343
(знаменатель прогрессии равен ⁷⁄₆)

б) нет, не может. Предположим, что такая прогрессия существует. Пусть первый член прогрессии равен A, знаменатель q = m/n — рациональное число, причём натуральные числа m и n взаимно просты (дробь несократима) . Для определённости будем считать прогрессию возрастающей, т. е. m>n (в противном случае достаточно записать члены прогрессии в обратном порядке) .

Тогда прогрессия будет выглядеть так:
A, Am/n, Am²/n², Am³/n³, Am⁴/n⁴.
Поскольку числа m и n взаимно просты, а последний член прогрессии является натуральным числом, то A делится нацело на n⁴:
A = an⁴.
Ещё раз запишем все члены прогрессии: an⁴, amn³, am²n², am³n, am⁴.
Итак, нам нужно найти такие натуральные числа a, m, n, чтобы
{ an⁴ ≥ 210,
{ am⁴ ≤ 350,
{ m > n.
Поскольку a≥1, то m⁴ ≤ 350; m≤4 (5⁴ = 625 — слишком много) . Значит, m/n≥(⁴⁄₃) ⇒ (m/n)⁴ ≥ (²⁵⁶⁄₈₁).
Но ²⁵⁶⁄₈₁ > ³⁵⁰⁄₂₁₀ = ⁵⁄₃
(значения можно грубо оценить: в левой стороне неравенства число, большее 2, а в правой — число, меньшее 2).

А (m/n)⁴ ≤ ³⁵⁰⁄₂₁₀. Полученное противоречие доказывает невозможность выполнения условий задачи.
4,7(44 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ