У Васи есть 13 карточек, на которых написаны "1" или "-1". Петя за один вопрос может узнать произведение чисел, записанных на любых трёх карточках. За какое минимальное количество вопросов Петя наверняка узнает произведение чисел на всех карточках?
1. Умножим все части двойного неравенства 1,7<√3<1,8 на √4=2: 1,7*2<√3*√4<1,8*2 3,4<√12<3,6 2. Перемножим данные двойные неравенства : 1,7*2,6<√3*√7<1,8*2,7 4,42<√21<4,86 Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные: -4,42>-√21>-4,86 или в более привычной форме -4,86<-√21<-4,42 3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42: 3,4-4,86<√12-√21<3,6-4,42 -1,26<√12-√21<-1,02.
1. Умножим все части двойного неравенства 1,7<√3<1,8 на √4=2: 1,7*2<√3*√4<1,8*2 3,4<√12<3,6 2. Перемножим данные двойные неравенства : 1,7*2,6<√3*√7<1,8*2,7 4,42<√21<4,86 Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные: -4,42>-√21>-4,86 или в более привычной форме -4,86<-√21<-4,42 3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42: 3,4-4,86<√12-√21<3,6-4,42 -1,26<√12-√21<-1,02.
1,7*2<√3*√4<1,8*2
3,4<√12<3,6
2. Перемножим данные двойные неравенства :
1,7*2,6<√3*√7<1,8*2,7
4,42<√21<4,86
Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные:
-4,42>-√21>-4,86
или в более привычной форме
-4,86<-√21<-4,42
3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42:
3,4-4,86<√12-√21<3,6-4,42
-1,26<√12-√21<-1,02.