1. Б
Объяснение: Для умножения многочлена на многочлен существует очень легкое правило. Чтобы умножить два многочлена между собой, надо каждый член первого многочлена умножить на каждый член второго многочлена. После это полученные произведения сложить и привести подобные.
2. А
Объяснение: У вырази a*b е два множники, ''a''*b називається першим множником, а*''b'' називається другим множником.
3. В
Объяснение: Спрощуючи даний вираз, згрупуємо окремо числові та буквені множники.
4. Г
5. Б
Объснение: Коэффицие́нт «совместно» + «производящий») — термин, обозначающий числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.
6. А
Найдем производную
f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х (х²-1)=4х (х-1)(х+1)
Найдем критические точки, т. е f´(x)=0
4х (х-1)(х+1)=0
х=0 или х=1 или х=-1
-__-1___+0-1___+→Х
f´(-2)= 4*(-2)(-2-1)(-2+1)= 4*(-2)(-3)(-1)<0 ( нас интересует знак, а не число)
f´(-0,5)= 4*(-0,5)(-0,5-1)(-0,5+1)= 4*(-0,5)(-1,5)*0,5>0
f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5<0
f´(2)= 4*2*(2-1)(2+1)=4*2*1*3>0
В точке х=-1 производная меняет знак с – на +, значит это точка минимума;
В точке х=0 производная меняет знак с +на -, значит это точка максимума;
В точке х=1 производная меняет знак с – на +, значит это точка минимума;
2) f(x)= x^2+3x /x+4
Найдем производную
f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+4)-(х²+3х) *1/(х+4)²=(2х²+8х+3х+12-х²-3х) /(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)²
Найдем критические точки, т. е f´(x)=0
(х²+8х+12)/(х+4)²=0
х²+8х+12=0 и Х+4≠0; х≠-4
Д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6
т. е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т. к. (х+4)²>0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6)
+__-6___--4--2___+→Х
f´(-7)= (-7+2)(-7+6)=-5*(-1)>0
f´(-5)= (-5+2)(-5+6)=-3*1<0
f´(-3)= (-3+2)(-3+6)=-1*3<0
f´(0)= (0+2)(0+6)=2*6>0
В точке х=-6 производная меняет знак с + на - значит это точка максимума;
В точке х=-4 производная не меняет знак, значит это точка не является точкой экстремума ;
В точке х=-2 производная меняет знак с – на +, значит это точка минимума;
Удачи!