Будем умножать число 3 само на себя, пока не получим число большее 500. Количество перемноженных троек и будет искомым числом. Поэтому искомое число есть 6.
1) на отрезке [0;3] функция y=x³-4 возрастает, поэтому наименьшее значение она принимает при x=0, и оно равно 0-4=-4, а наибольшее - при x=3, и оно равно 3³-4=23.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
При вычислении воспользуйтесь формулами m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение: а) f(x)=x²-6x+4; В приведенном уравнение b =-6, a=1 m=x=-b/2a =-(-6)/(2*1)=6/2=3 n=y(3)=3²-6*3+4=9-18+4=-5 Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1 В приведенном уравнение b =-4, a=-1 m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2 n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5 Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3 m=x=-b/2a =-(-12)/(2*3)=12/6= 2 n=y(2)=3*2²-12*2+2=12-24+2= -10 Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
6
Объяснение:
Будем умножать число 3 само на себя, пока не получим число большее 500. Количество перемноженных троек и будет искомым числом. Поэтому искомое число есть 6.