Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
x²+9y⁴+1 ≥ -3xy²-x+3y²
x²+x+1 ≥ -3xy²+3y²-9y⁴
x²+x+1 ≥ -3y²(x-1+y²)
y²≥0 за будь-якого значення у
⇒ -3y²≤0
Знайдемо вершину параболи f(x)=x²+x+1
xo= -b/2a = -1/2= -0,5
f(xo)= 0,25-0,5+1=0,75
Вітки параболи напрямлені вгору, адже а>0, отже в такому випадку значення виразу x²+x+1 завжди додатнє (бо функція завжди додатня)
Тоді x²+x+1>0 за будь-якого значення х
1)Якщо у=0, x-будь-яке число, то -3y²=0 ⇒ -3y²(x-1+y²)=0
Як вказано раніше, x²+x+1>0
Будь-яке додатнє число більше нуля, отже й
x²+x+1 > -3y²(x-1+y²) ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²
2) Якщо х=0, y≠0,
З іншого боку, нерівність можна перетворити на таку:
x²+x+3xy² ≥ 3y²-9y⁴-1
х(x+1+3y²) ≥ 3y²-9y⁴-1
Якщо один із множників--нуль, то і весь вираз дорівнює нулю:
Необхідно довести, що
3y²-9y⁴-1 ≤ 0
-(3y²)²+3y²-1 ≤ 0
y⁴≥0
Заміна: 3y²=n, n>0
-n²+n-1≤ 0
f(n)= -n²+n-1
no= -1/-2 = 1/2= 0,5
f(no)= -0,25+0,5-1 = -0,75
Вітки параболи напрямлені вниз, бо а<0
Отже, -n²+n-1≤ 0 ⇒ 3y²-9y⁴-1≤0
х(x+1+3y²) ≥ 3y²-9y⁴-1 ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²
3) Якщо х>0, y≠0
x²+x+3xy² ≥ 3y²-9y⁴-1
x²≥0
Як зазначено раніше, 3y²-9y⁴-1<0
Відомо, що x²>0, 3y²>0
Оскільки х--додатнє число, то 3xy²>0
При додаванні додатніх чисел результат теж додатній: x²+x+3xy²>0
Додатнє число завжди більше за від'ємне, тож
x²+x+3xy² > 3y²-9y⁴-1 ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²
4) Якщо х<0, y≠0
x²+x+3xy² ≥ -9y⁴+3y²-1
Заміна: 3y²=n, n>0
f(x)=x²+x(1+n)
b=1+n
коефіцієнт b не впливає на зміщення по ординаті, а коефіцієнта с в наданій квадратичній функції немає. Також вітки параболи напрямлені вгору, бо а>0.
Таким чином, x²+x(1+n)>0, а -n²+n-1<0, тому x²+x(1+n)>-n²+n-1<0 ⇒ x²+x+3xy² ≥ -9y⁴+3y²-1 ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²
Нерівність доведено