18 (км/час) - собственная скорость лодки
6 (км/час) - скорость течения реки
Объяснение:
Моторная лодка в первый день км по течению реки за 5ч, а во второй день она км против течения за 6ч. Найти собственную скорость лодки и скорость течения реки
х - собственная скорость лодки
у - скорость течения реки
х+у - скорость лодки по течению
х-у - скорость лодки против течения
Согласно условию задачи составляем систему уравнений:
120/(х+у)=5
72/(х-у)=6
Умножим первое уравнение на (х+у), второе на (х-у), избавимся от дроби:
120=5(х+у)
72=6(х-у)
5(х+у)=120
6(х-у)=72
5х+5у=120
6х-6у=72
Разделим первое уравнение на 5, второе на 6 для удобства вычислений:
х+у=24
х-у=12
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=24-у
24-у-у=12
-2у=12-24
-2у= -12
у= -12/-2
у=6 (км/час) - скорость течения реки
х=24-у
х=24-6
х=18 (км/час) - собственная скорость лодки
Проверка:
120:24=5 (часов) по течению
72:12=6 (часов) против течения, всё верно.
N-й степенью ненулевого числа называется произведение n множителей, каждый из которых равен заданному числу.
Число, которое умножают, называется основанием степени, число множителей является показателем степени.
Само число считают первым степенью числа и показатель степени не пишут.
Любой степень числа 1 равен единице ((.
Нулевой степень числа, отличного от нуля, равна единице: .
Степень с отрицательным показателем ненулевого числа равна числу, обратному степенью с противоположным показателем этого числа: .
Возведение в степень имеет следующие свойства:
1) Произведение степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным сумме показателей степени множителей: .
Чтобы умножить степени с одинаковой основой, нужно основу оставить без изменений, а показатели степени добавить.
2) Доля степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным разности показателей степени множителей: .
Чтобы разделить степени с одинаковой основой, нужно основу оставить без изменений, а от показателя степени делимого вычесть показатель степени делителя.
3) Степень степени равен степенью с той же основой и показателем степени, равным произведению показателей степени: .
Чтобы поднять степень в степень, нужно основу оставить без изменений, а показатели степени умножить.
4) Степень произведения множителей равен произведению степеней с тем же показателем каждого множителя: .
Чтобы поднять произведение множителей в степени, надо каждый множитель преподнести в эту степень и результаты перемножить.
5) Чтобы поднять дробь в степень, нужно поднести к этому степени и числитель, и знаменатель:.
Стандартным видом числа называется его запись в виде произведения некоторого числа, большего или равного единице, но меньшего от десяти, на степень числа десять
1) Область определения функции: х∈ (-∞ ;+∞)
2) Промежутки возрастания: функция возрастает на всей области определения , то есть при х∈(-∞;+∞)
3) Область значения функции: у∈( -2;+∞)