Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
Исследовать функцию: • Область определения функции: • Точки пересечения с осью Ох и Оу: Точки пересечения с осью Ох: нет. Точки пересечения с осью Оу: Нет. • Периодичность функции. Функция не периодическая. • Критические точки, возрастание и убывание функции: 1. Производная функции: 2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума х=1 - точка минимума
f(1) = 1 - Относительный минимум f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
• Точка перегиба: Очевидно что точки перегиба нет, т.к.
1.
1)х+у=13
х+х-4=13
2х=17
х=17:2
х=8,5
2) у=х-4
у=8,5-4
у=4,5
ответ: (8,5 ; 4,5)
2.
1)13x-14y=27
2y+15-14y=27
-12y=12
y= 12/(-12)
y= -1
2)13x=2y+15
13x=2*(-1)+15
13x= 13
x=1
ответ : (1;-1)