ответ на фото я сам делал зделай лучшим ответом
3.
sin²φ+2cos²φ / sin²φ-cos²φ, если tgφ = 2
Разделим числитель и знаменатель на cos²φ, получим:
sin²φ+2cos²φ / sin²φ-cos²φ = sin²φ+2cos²φ/cos²φ / sin²φ -cos²φ/cos²φ = sin²φ/cos²φ + 2cos²φ/cos²φ / sin²φ/cos²φ - cos²φ/cos²φ = tg²φ + 2/tg²φ - 1 = 2²+2/2²-1 = 4+2/4-1 = 6/3 = 2
ответ: 2
4.
sinx × cosx + cos²x + 3sin²x = 3
sinx × cosx + cos²x + 3(1-cos²x) = 3
sinx × cosx + cos²x + 3 - 3cos²x = 3
sinx × cosx + cos²x + 3 - 3cos²x - 3 = 0
sinx × cosx + cos²x - 3cos²x = 0
sinx × cosx - 2cos²x = 0
cosx × (sinx - 2cosx) = 0
cosx = 0 или sinx - 2cosx = 0
x₁ = π/2 + πn, n∈Z sinx = 2cosx | : cosx
sinx/cosx = 2cosx/cosx
tgx = 2
x₂ = arctg 2 + πn, n∈Z
ответ: x₁ = π/2 + πn, n∈Z; x₂ = arctg 2 + πn, n∈Z
–
| k > -8 , 2 действительных корня.
< k = -8 , 1 действительный корень.
| k < -8 , нет действительных корней.
–
объяснение:
вместо это
↓
–
|
< нарисуйте это → {
|
–
удачи!