1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
0.2(x-2)=0.7(x+3)
0.2x - 0.4 = 0.7x + 2.1
-0.5x = 2.5
x = -5
2(x+3)-3(x+2)=5-4(x+1)
2х + 6 - 3х - 6 = 5 - 4х - 4
3х = 1
х = 1/3
3(x-2)-2(x-1)=17
3х - 6 - 2х + 2 = 17
х = 21
3-5(x-1)=x-2
3 - 5х + 5 = х - 2
-6х = -10
х = 10/6