М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fox2121
fox2121
17.10.2020 14:43 •  Алгебра

. Алгебра Мотоциклист и автомобилист едут по гоночному кругу в одном направлении. Мотоциклист проходит круг за 6 минут. Автомобилист едет быстрее и встречается с мотоциклистом раз в 6 минут. Через какое время будут встречаться мотоциклист и автомобилист, если они поедут в разных направлениях? ответ введите в минутах.

👇
Ответ:
bilpi
bilpi
17.10.2020

Объяснение: через 3 минуты,мне кажется

4,7(57 оценок)
Открыть все ответы
Ответ:
DetasGames
DetasGames
17.10.2020

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений

x

2

+

6

x

+

1

,

4

=

0

,

8

x

2

7

x

=

0

,

x

2

4

9

=

0

имеет вид

a

x

2

+

b

x

+

c

=

0

,

где x - переменная, a, b и c - числа.

В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.

Квадратным уравнением называется уравнение вида ax2+bx+c=0, где x - переменная, a, b и c - некоторые числа, причём

a

0

.

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax2+bx+c=0, где

a

0

, наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения

x

2

11

x

+

30

=

0

,

x

2

6

x

=

0

,

x

2

8

=

0

Если в квадратном уравнении ax2+bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x2+7=0, 3x2-10x=0, -4x2=0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:

1) ax2+c=0, где

c

0

;

2) ax2+bx=0, где

b

0

;

3) ax2=0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax2+c=0 при

c

0

переносят его свободный член в правую часть и делят обе части уравнения на a:

x

2

=

c

a

x

1

,

2

=

±

c

a

Так как

c

0

, то

c

a

0

Если

c

a

>

0

, то уравнение имеет два корня.

Если

c

a

<

0

, то уравнение не имеет корней (квадратный корень из отрицательного числа извлекать нельзя).

Для решения неполного квадратного уравнения вида ax2+bx=0 при

b

0

раскладывают его левую часть на множители и получают уравнение

x

(

a

x

+

b

)

=

0

{

x

=

0

a

x

+

b

=

0

{

x

=

0

x

=

b

a

Значит, неполное квадратное уравнение вида ax2+bx=0 при

b

0

всегда имеет два корня.

Неполное квадратное уравнение вида ax2=0 равносильно уравнению x2=0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax2+bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение

x

2

+

b

a

x

+

c

a

=

0

Преобразуем это уравнение, выделив квадрат двучлена:

x

2

+

2

x

b

2

a

+

(

b

2

a

)

2

(

b

2

a

)

2

+

c

a

=

0

x

2

+

2

x

b

2

a

+

(

b

2

a

)

2

=

(

b

2

a

)

2

c

a

(

x

+

b

2

a

)

2

=

b

2

4

a

2

c

a

(

x

+

b

2

a

)

2

=

b

2

4

a

c

4

a

2

x

+

b

2

a

=

±

b

2

4

a

c

4

a

2

x

=

b

2

a

+

±

b

2

4

a

c

2

a

x

=

b

±

b

2

4

a

c

2

a

Подкоренное выражение называют дискриминантом квадратного уравнения ax2+bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.

D

=

b

2

4

a

c

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:

x

1

,

2

=

b

±

D

2

a

, где

D

=

b

2

4

a

c

Очевидно, что:

1) Если D>0, то квадратное уравнение имеет два корня.

2) Если D=0, то квадратное уравнение имеет один корень

x

=

b

2

a

.

3) Если D<0, то квадратное уравнение не имеет корней, т.к. извлекать корень из отрицательного числа нельзя.

Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D < 0).

При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:

1) вычислить дискриминант и сравнить его с нулём;

2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax2-7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x2+px+q=0 обладают свойством:

{

x

1

+

x

2

=

p

x

1

x

2

=

q

надеюсь правильно

4,4(80 оценок)
Ответ:
dimonm079
dimonm079
17.10.2020
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у.
Производная этой функции равна нулю пр х = 0.
Подставив это значение в уравнение функции, получаем у = 1.
Исследуем поведение производной вблизи точки х = 0.
х           0.5              0           -0.5
у'      -0.6875          0          0.6875.
Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1.
Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809.
ответ при (х=+-3) :   умакс = 1,
                                   умин = -809.
4,8(2 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ