Решение a) Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε. Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε. По определению это и означает, что lim x→ −2 (3x - 2) = −2
1. Графиком функции y=(x+4)² будет являться график функции y=x², смещенный по оси абсцисс на 4 единицы влево: x=-4 ⇒ y=0 x=-5 ⇒ y=1 x=-3 ⇒ y=1 x=-6 ⇒ y=4 x=-2 ⇒ y=4
2. Графиком функции y=(x-5)² будет являться график функции y=x², смещенный по оси абсцисс на 5 единиц вправо: x=5 ⇒ y=0 x=6 ⇒ y=1 x=4 ⇒ y=1 x=7 ⇒ y=4 x=3 ⇒ y=4
3. Графиком функции y=(x-1,5)² будет являться график функции y=x², смещенный по оси абсцисс на 1,5 единицы вправо: x=1,5 ⇒ y=0 x=2,5 ⇒ y=1 x=0,5 ⇒ y=1 x=3,5 ⇒ y=4 x=-0,5 ⇒ y=4
4. Графиком функции y=(x+3,5)² будет являться график функции y=x², смещенный по оси абсцисс на 3,5 единицы влево: x=-3,5 ⇒ y=0 x=-4,5 ⇒ y=1 x=-2,5 ⇒ y=1 x=-5,5 ⇒ y=4 x=-1,5 ⇒ y=4
-13х⁴+(3х²-2у)(2у+3х²)
1) 3х²-2у=3*1*3=9-2*2=5
2) 2у+3х²= 2*2=4+3*1*3=13
3) 5*13= 65
4)13*1*13*13*13=28 561
5) 28 561+65=28 626