М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ighjkhh
ighjkhh
13.06.2021 22:47 •  Алгебра

Раскрыть скобки привести подобные слагаемые (xy-5x^3-6x^2y^3)(3xy-8x^2y^5+10y^8)


Раскрыть скобки привести подобные слагаемые (xy-5x^3-6x^2y^3)(3xy-8x^2y^5+10y^8)

👇
Ответ:
Kamelotka
Kamelotka
13.06.2021

В решении.

Объяснение:

раскрыть скобки привести подобные слагаемые:

(2xy - 5x³ + у² - 6x²y³)*(3xy - 8x²y⁵ + 10y⁸) =

= 6х²у² - 16х³у⁶ + 20ху⁹ - 15х⁴у + 40х⁵у⁵ - 50х³у⁸ + 3ху³ - 8х²у⁷ + 10у¹⁰ -

- 18х³у⁴ + 48х⁴у⁸ - 60х²у¹¹.

Нет подобных слагаемых.

4,6(85 оценок)
Открыть все ответы
Ответ:
мозг1101
мозг1101
13.06.2021

{

x−y=1

x+y=9

⇔{

y=x−1

y=9−x

Графики линейных функций y = 9–x и y = x–1 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.

Для функции y = 9–x (зелёные точки):

1) x=0 ⇒ y= 9–0= 9 ⇒ (0; 9)

2) y=0 ⇒ 0= 9–x ⇒ x= 9 ⇒ (9; 0).

Для функции y = x–1 (синие точки):

1) x=0 ⇒ y= 0–1= –1 ⇒ (0; –1)

2) y=0 ⇒ 0= x–1 ⇒ x= 1 ⇒ (1; 0).

Построим графики функций в одной системе координат (см. рисунок 1). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):

(5; 4).

\tt \displaystyle \left \{ {{3 \cdot x+y=1} \atop {x+y=5}} \right. \Leftrightarrow \left \{ {{y=1-3 \cdot x} \atop {y=5-x}} \right.{

x+y=5

3⋅x+y=1

⇔{

y=5−x

y=1−3⋅x

Графики линейных функций y = 1–3•x и y = 5–x - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.

Для функции y = 1–3•x (синие точки и синие штрихи):

1) x=0 ⇒ y= 1–3•0 = 1 ⇒ (0; 1)

2) x=1 ⇒ y= 1–3•1 = –2 ⇒ (1; –2).

Для функции y = 5–x (зелёные точки):

1) x=0 ⇒ y= 5–0 = 5 ⇒ (0; 5)

2) y=0 ⇒ 0= 5–x ⇒ x= 5 ⇒ (5; 0).

Построим графики функций в одной системе координат (см. рисунок 2). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):

(–2; 7).

\tt \displaystyle \left \{ {{y-6 \cdot x=-25} \atop {y-x=-5}} \right. \Leftrightarrow \left \{ {{y=6 \cdot x-25} \atop {y=x-5}} \right.{

y−x=−5

y−6⋅x=−25

⇔{

y=x−5

y=6⋅x−25

Графики линейных функций y = 6•x–25 и y = x–5 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.

Для функции y = 6•x–25 (синие точки и синие штрихи):

1) x=2 ⇒ y= 6•2–25 = –13 ⇒ (2; –13)

2) x=3 ⇒ y= 6•3–25 = –7 ⇒ (3; –7).

Для функции y = x–5 (зелёные точки):

1) x=0 ⇒ y= 0–5 = –5 ⇒ (0; –5)

2) y=0 ⇒ 0= x–5 ⇒ x= 5 ⇒ (5; 0).

Построим графики функций в одной системе координат (см. рисунок 3). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):

(4; –1).

4,6(78 оценок)
Ответ:
юля2716
юля2716
13.06.2021
1.
1)  х-8  <0
   11+х
Используем метод интервалов:
(х-8)(11+х)<0

{(x-8)(x+11)<0      {(x-8)(x+11)<0
{11+x≠0               {x≠-11

Отметим нули функции f(x)=(x-8)(x+11):
х=8      х=-11
    +           -             +
-11 8
           
x∈(-11; 8)

2)   13+х   >0
      2,5х
{2.5x(13+x)>0     {x(x+13)>0
{2.5x≠0              {x≠0

x(x+13)>0
x=0     x=-13
    +            -           +
-13 0
                 
x∈(-∞; -13)∨(0; ∞)

3) х+7 <0
   3-х
{(x+7)(3-x)<0   {-(x-3)(x+7)<0       {(x-3)(x+7)>0
{3-x≠0             {x≠3                    {x≠3

(x-3)(x+7)>0
x=3     x=-7
    +           -          +
-7 3
             
x∈(-∞; -7)∨(3; ∞)
 
4) 2х-4 >0
    x+2
{(2x-4)(x+2)>0     {2(x-2)(x+2)>0     {(x-2)(x+2)>0
{x+2≠0               {x≠-2                   {x≠-2

(x-2)(x+2)>0
x=2    x=-2
     +          -         +
-2 2
             
x∈(-∞; -2)∨(2; ∞)

2.
1) (х-1)(х+1)≤0
   х=1     х=-1
     +         -         +
 -1  1
           
х∈[-1; 1]
х={-1; 0; 1} - целые решения неравенства

2) -х²-5х+6>0
    x²+5x-6<0
Парабола, ветви направлены вверх.
Нули функции:
х²+5х-6=0
Д=25+24=49
х₁=-5-7=-6
       2
х₂=-5+7=1
        2
     +       -          +
-6 1
           
x∈(-6; 1)
х={-5; -4; -3; -2; -1; 0}

3) 2+x-x²≥0
   -x²+x+2≥0
    x²-x-2≤0
  x²-x-2=0
 D=1+8=9
 x₁=1-3=-1
        2
  x₂=1+3=2
          2
      +         -         +
 -1 2
             
x∈[-1; 2]
х={-1; 0; 1; 2}

4) 3х²-7х+2<0
   3x²-7x+2=0
D=49-4*3*2=49-24=25
x₁=7-5 = 1 
       6     3
x₂= 12= 2
      6    
   +          -          +
1 2
         3  
x∈(¹/₃; 2)
х={1}
4,7(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ