1)если f(-x) = f(x), то f(x) -чётная; если f(-x) = -f(x), то f(x) - нечётная. Переведём на "простой язык": Если вместо "х" в функцию подставим "-х" и при этом функция не изменится, то всё. данная функция - чётная. Если вместо "х" в функцию подставим "-х" и при этом функция только поменяет знак, то всё. данная функция - нечётная. итак, наши примеры: а) эта функция - ни чётная, ни нечётная в)(х-4)(х-2) = х^2 -6x +8. данная функция у = х. Это нечётная функция. с) это чётная функция. d) это ни чётная, ни нечётная функция. е) это нечётная функция ( числитель не помняет знак, а знаменатель поменяет, значит, вся дробь поменяет знак. 2) у = -2х+1 (у = 1 это прямая параллельная оси х. Симметричные точки относительно этой прямой поменяют знак ординаты)
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2, 5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение, 5х + 7х = 24, 12х = 24, х = 2, теперь из любого из уравнений выделяем у: если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).