Котята от "1", "2", ... , "13" . среди них обязательно 2 рыжих, пусть это будут (не ограничивая общности "12", "13") добавим вместо них котят "14", "15", у нас снова 13 котят, среди них два рыжих, пусть это "14", "15" вместо "14", "15" возьмем "16". "17", опять же 13 котят, среди них два рыжих, не ограничивая общности (все равно кого из них считать рыжим --нумеровали мы их произвольно) пусть это будут "16", "17"
итого у нас уже есть шесть рыжих котят "12", "13", "14", "15", "16", "17"
рассмотрим котят "4", "5", "6", ..."17", (учтем что некоторые "уже рыжие"), среди 14-х котят один белый, пусть это будет "11", аналогично рассмотрим последовательно партии котят "3", "4", "10", "12", ..., "17" "2", "3", ..."9", "12", ..."17" "1", "2", ..."8", "12", ..., "17" и определим что "8","9", "10", "11" - серые котята
итого у нас имеется известных 6 рыжих котят, и 4 серых, в любой группе, из этих 6 рыжих, 4 серых, любые 3 другие из оставшихся 17-10=7 котят будут белыми (13-6-4=3 котята, 3 из 13 в группе белые)
Это линейная функция графиком которой является прямая ,чтобы построить прямую достаточно знать две точки х=0 тогда у =-3·0+4= 4 (0;4)-первая точка у=-2 -2=-3х+4 -3х=-2-4 -3х--6 х=-6÷(-3) х=2 (2;-2) вторая точка отмечаеш в декартовой системе координат эти точки и через них проводиш прямую это и будет график функции если координати точки удовлетворяют уравнению -значит точка пренадлежит графику а это значит что график проходит через точку А Подставим координаты точку и проверим -130=-3·42+4 -130=-132+4 -130 ≠-128 это значит что график не проходит через точку А(42;-130)
да
3(2×2-1)=2+7
3×3=9
9=9