Биномиальное распределение стремится к нормальному при больших n
По условию
р = 0.9
соответственно
q = 1- p = 0.1
Математическое ожидание
М= np= 1000 * 0.9 = 900
Дисперсия
D= npq = 1000*0.9*0.1= 90
Сигма = √D= 3√10 = ~9.5
Мы рассматриваем интервал от центра распределения 900 до 940 - это больше чем четыре сигмы.
В этом случае в табличку нормального распределения можно даже не заглядывать, хвостик за четыремя сигмами очень малюсенький, пятый знак после запятой.
Половина всей выборки до 900 , половина после.
ответ
Вероятность равна ~0.5
Собственная скорость катера Vс = 24 км/ч
Путь по течению:
Скорость V₁ = Vc + Vт = (24 + x) км/ч
Время t₁ = 5 часов
Расстояние S₁ = 5(24 + x) км
Путь против течения:
Скорость V₂= Vc - Vт = ( 24 - x) км/ч
Время t₂ = 6 часов
Расстояние S₂ = 6(24 - x) км
По условию S₂ - S₁ = 2 км ⇒ уравнение:
6(24 - х ) - 5(24 + х) = 2
6 *24 - 6х - 5*24 - 5х = 2
24 - 11х = 2
- 11х = 2 - 24
- 11х = - 22
11х = 22
х = 22/11
х = 2 (км/ч) Vт
ответ : 2 км/ч скорость течения реки.