1)возрастает на промежутке (-2;0) и (2;+inf)
2) (-inf;-2) и (0;+inf)
Объяснение:
1) находим производную и корни этой производной
f'(x) = 3x^3-12x
x(x^2-4) = =0
x = 0, x=2, x=-2
расположим эти корни на числовой прямой и подставим значения левее и правее найденных корней в нашу найденную производную
ищем промежутки в которых стоит + значит начиная от левого числа и до правого наша функция растет
2)аналогично первому, находим производную , приравниваем к нулю ищем корни выставляем на числовой прямой расставляем знаки и ищем + там где+ значит там функция растет
sin52'cos22'-cos52'sin22'=sin(52-22)=sin30=0.5
2)Преобразуйте sin4a-sin2a в произведение,
по формуле разности синусов:
2cossin=2cos3α*sinα
3)Установите соответствие между тригонометрическими функциями (А-В) и их числовыми значениями(1-4), если sina=3/5 и п/2п
A.cosa 1) (-1)*1/3
Б.ctga 2)(-24/25)
В.sin2a 3)(-4/5)
4) 4/5
решение:
п/2<α<п - угол принадлежит 2 четверти⇒ cos x отрицательный
cosx= -√(1-sin²x)= -√1-9/25= -√16/25= -4/5
ctgx=
sin2x=2sinx cosx= - 2=-24/25
4)Вычислите cos210' и cos15'
cos210=cos(180+30)=-cos30= -
cos15=cos(45-30)=cos45*cos30+sin45*sin30=