Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
х+у=75 литров молока.
Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х
Составим и решим систему уравнений:
х+у=75
у+2=1,2х
Выразим значение у в первом уравнении:
у=75-х
Подставим его во второе уравнение (метод подстановки):
у+2=1,2х
75-х+2=1,2х
77-х-1,2х=0
-2,2х=-77
2,2х=77
х=77:2,2
х=35 (литров молока) - в первом бидоне
Тогда во втором у=75-х=75-35=40 литров.
ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
(проверим: 35-35*1/5=35-7=28 литров
40+2=42 литра
28*1,5=42 литра)