Отмечаем на координатной прямой точки, в которых знаменатель и числитель обращаются в ноль. И выкалываем те, что из знаменателя. Мы получили 5 интервала. Перед дробью знак положительный и все множители имею пол. знак при х, поэтому на правом интервале ставим "плюс", далее чередуем знак через каждую отмеченную точку (все множители в нч степени - 1). Нас интересует, когда больше или равно, поэтому выбираем интервалы с плюсом, учитывая границы.
ответ: x ∈ (-∞;-3) ∪ [-2;2] ∪ (3;+∞).
В решении использовалась формула сокращённого умножения: a²-b²=(a-b)(a+b).
Всё решается просто. так как cos2x=2*(cosx)^2-1 (эту формулу можно найти в учебнике или доказать) , то подставляя в уравнение получим: cos2x+4cosx-5=0 2*(cosx)^2-1+4cosx-5=0 (cosx)^2+2(cosx)-3=0 это простое квадратное уравнение относительно cosx. то есть получается два решения: cosx=1 и cosx=-3 но подходит только одно решение cosx=1, так как |cosx|< =1 осталось решить простое тригонометрическое уравнение cosx=1, по формуле тригонометрии cosx=a, x=(+/-)arccosa+2*pi*n pi-это знаменитое число 3,14159 n-любое целое число вот и всё решение.
Решим неравенство методом интервалов.
Отмечаем на координатной прямой точки, в которых знаменатель и числитель обращаются в ноль. И выкалываем те, что из знаменателя. Мы получили 5 интервала. Перед дробью знак положительный и все множители имею пол. знак при х, поэтому на правом интервале ставим "плюс", далее чередуем знак через каждую отмеченную точку (все множители в нч степени - 1). Нас интересует, когда больше или равно, поэтому выбираем интервалы с плюсом, учитывая границы.
ответ: x ∈ (-∞;-3) ∪ [-2;2] ∪ (3;+∞).
В решении использовалась формула сокращённого умножения: a²-b²=(a-b)(a+b).