В решении.
Объяснение:
1) Ложь. Знак минус перед х² показывает - ветви вниз.
2) Истина. Уравнение имеет 2 корня, значит, парабола имеет две точки пересечения с осью Ох.
3) Ложь. Нет минуса перед х².
4) Истина. Знак минус перед х² показывает - ветви вниз.
5) Ложь. Уравнение имеет 2 корня, значит, парабола имеет две точки пересечения с осью Ох.
6) Истина. Уравнение не имеет решения, значит, нет точек пересечения параболы с осью Ох.
7) Истина. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
8) Ложь. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
Координаты вершины параболы (2; 0).
9) Истина. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
10) Ложь. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
Координаты вершины параболы (-3; 0).
Преобразуем по формуле суммы кубов: (x+y)(x²-xy+y²) = x³+y³
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
Из теоремы Виета получаем, что
x₁+x₂ = 2x₁x₂ = qПреобразуем нашу формулу суммы кубов, подставив вместо x₁+x₂ и вместо x₁x₂ соответствующие значения (2 и q):
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
2 * (x₁²- q + x₂²) = 32
Чтобы найти значение x₁²+x₂², возведём в квадрат следующее равенство:
(x₁+x₂)² = 2²
x₁²+2x₁x₂+x₂²=4
x₁²+x₂²=4-2x₁x₂
Воспользуемся следующим равенством x₁x₂ = q
x₁²+x₂²=4-2q
Ещё раз преобразуем нашу формулу:
x₁²+ x₂² - q= 16
4 - 2q - q = 16;
-3q =12
q = -4
Умножим на -4/5 и получаем ответ: -4/5q = -16/5