Да я те отвечаю))Ну а сеьезно Значение неизвестной величиной, для которой из данного уравнения мы получим истинное числовое равенство, называется корнем этого уравнения. Два уравнения называются эквивалентными, если множества их корней совпадают, корни первого уравнения являются также корнями второго и наоборот. Действуют следующие правила: 1. Если в данном уравнении значение заменяется другим, но идентичным, мы получаем уравнение, эквивалентное данному. 2. Если в данном уравнении некоторое значение переносится из одной стороны на другую с противоположным знаком, мы получаем уравнение, эквивалентное (равное) заданному. 3. Если мы умножаем или делим обе стороны уравнения на одно и то же число, отличное от нуля, мы получаем уравнение, эквивалентное заданному. Уравнение вида ax + b = 0, где a, b - заданные числа, называется простым уравнением по отношению к неизвестной величине х.
)Один из углов при основании равнобедренного треугольника равен 65 градусов, найдите остальные углы треугольника. 65* , 65*, 50*
2)В треугольнике ABC угол B равен 110 градусов, бисектриса углов а и с пересекаются в точке о, найдите угол АОС 145*
3)в прямоугольном треугольнике АВС, уголС равен 90 градусов, угол В 60 гадусов, АВ равняется 15 см. найдите ВС. 7,5см
4)один из углов прямоугольного треугольника равен 60 градусов, а сумма гипотенузы и меньшего катета равна 42 см. найдите гипотенузу 28см
5)на сторонах угла А отмечены точки В и С так что АВ = АС. Через точки В и С проведенны прямые перпендикулярны соответственно к сторонам АВ и АС данного угла и пересекается в точке М. Доказать что МВ=МС.
так как АВ=АС, то треугольник ВАС равнобедренный, следовательно, две высоты треугольника делятся в точке их пересечения в одном и том же отношении, считая от вершин треугольника, а это значит, что ВМ=МС
6)В треугольнике АВС и А1В1С1 углы В и В1 прямые, угол А =А1,сторона АС=А1С1.Найти стороны В1С1 и А1В1 и треугольник А1В1С1 если ВС 17 см АВ 12 см??? ?
1. Если в данном уравнении значение заменяется другим, но идентичным, мы получаем уравнение, эквивалентное данному.
2. Если в данном уравнении некоторое значение переносится из одной стороны на другую с противоположным знаком, мы получаем уравнение, эквивалентное (равное) заданному.
3. Если мы умножаем или делим обе стороны уравнения на одно и то же число, отличное от нуля, мы получаем уравнение, эквивалентное заданному.
Уравнение вида ax + b = 0, где a, b - заданные числа, называется простым уравнением по отношению к неизвестной величине х.