1) 7 легковых, 15 грузовых машин
Объяснение:
Задача 1.
Мы знаем что общее количество отремонтированных машин составляет 22.
Возьмём количество грузовых машин как х. А количество легковых как (х-8). С этих данных составим уравнение:
х + х-8 = 22,
2х-8=22,
2х=22+8,
2х=30,
х=30:2,
х=15.
15 - это количество грузовых машин.
теперь 15 - 8 = 7 машин - это легковые машины.
Задача 2.
Нам известно, что общее количество выпущенных изделий равно 1315. Изделия в январе обозначим через х. А изделия в феврале обозначим через (х+165). По этим данным составим уравнение:
х + х+165 = 1315,
2х+165=1315,
2х=1315-165,
2х=1150,
х=1150:2,
х=575.
575 - это количество изделий выпущенных в январе.
тогда 575+165= 740. это количество изделий выпущенных в феврале.
В январе - 572
В феврале - 740.
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.