Дан треугольник ABC пример периметр которого 42 см на стороне AC взята точка M Так что периметр треугольника ABM и треугольника BMC равны 32 см и 35 см соответственно Найдите длину отрезка BM
Р (треугольника АВС) = АВ + ВС + СА = 42 см; также по условию задано, что АС = АМ + МС, потому как на стороне АС взята точка М; Р (треугольника АВМ) = АВ + ВМ + МА = 32 см; Р (треугольника ВМС) = ВС + СМ + МВ = 35 см; тогда Р (треугольника АВС) = Р (треугольника АВМ) - МВ + Р (треугольника ВМС) - МВ; Подставим заданные значения в уравнения периметра треугольника АВС, неизвестную сторону МВ обозначим через переменную х:
Сделаем рисунок к задаче. Примем во внимание, что ∠ abd совсем не обязательно должен быть равен 90°, и на самом деле он не 90°, хотя и похож, потому при решении проигнорируем его.
Треугольник abm- равнобедренный.
В нем ∠ amb=∠ mad как углы при пересечении параллельных прямых секущей, а ∠ bam=∠ mad по построению.
Опустим из вершины b высоту bh.
ah=ab·sin(30)=25·1/2=12,5 bh=ab*sin(60)=(25√3):2 hd=(25+15)-12,5=27,5 bd= √(bh²+hd²)=√(25√3):2)²+(27,5 )²= √(1875/4+3025/4)=√4900/4=35 см ( можно и по теореме косинусов, результат должен быть одинаковым)
BM = 12,5см
Объяснение:
Р (треугольника АВС) = АВ + ВС + СА = 42 см; также по условию задано, что АС = АМ + МС, потому как на стороне АС взята точка М; Р (треугольника АВМ) = АВ + ВМ + МА = 32 см; Р (треугольника ВМС) = ВС + СМ + МВ = 35 см; тогда Р (треугольника АВС) = Р (треугольника АВМ) - МВ + Р (треугольника ВМС) - МВ; Подставим заданные значения в уравнения периметра треугольника АВС, неизвестную сторону МВ обозначим через переменную х:
42 = 32 - х + 35 - х;
2х = 32 + 35 - 42;
2х = 67 - 42;
2х = 25;
х = 25 : 2;
х = 12,5 (см) - сторона ВМ.
ответ: ВМ = 12,5 см.