разница арифметичесской прогрессии равна
d=a[2]-a[1]=4.2-4.6=-0.4
общий член арифметичесской прогрессии равен
a[n]=a[1]+d*(n-1)
a[n]=4.6-0.4*(n-1)=4.6-0.4n+0.4=5-0.4n
найдем сколько положительных членов в данной арифметичесской прогрессии
5-0.4n>0
-0.4n>-5
n<5:0.4
n<12.5
12 наибольшее натуральное число, удовлетворяющее неравенство
значит первые 12 членов данной арифметичесской прогрессии положительные
Сумма первых n членов арифметической прогресси равна
S[n]=(2*a[1]+(n-1)*d)/2*n
S[12]=(2*4.6+(12-1)*(-0.4))/2*12=28.8
отвте: 28.8
Рекомендую поступить так. :
Привести трехчлен к виду A(x+B)^2+C тогда:
это обычная парабола y=x^2, но:
1. Сжата или растянута в А раз вдоль оси иксов
2. Сдвинута по оси икс на -В
3. Сдвинута по оси игреков на С.
Ну а точки пересечения с осями очень легко вычисляются:
1. Y=0 вычисляешь пересечение с Х
2. X = 0 вычисляешь пересечение с Y
Вот и все правила.
Привести к указанному виду за счет выделения полного квадрата.
Знак перед x^2 говорит о направленности ветвей.