нам удобнее всего будет применить метод сложения. Рассмотрев оба уравнения мы видим, что перед переменной y в обеих уравнениях мы можем сделать взаимно противоположными коэффициенты.
РЕШЕНИЕ начнем с общих понятий. Рисунок в приложении. Мы знаем функцию = Y =x² - парабола - (зелёный график). Это чётная функция и имеет равные значения как при положительных, так и при отрицательных значениях аргумента Х. Но должна быть и обратная ей функция = X = Y², которую можно привести к виду = Y = √x. График этой функции та же самая парабола, но повернутая вдоль оси Х. В результате получаем две ветви параболы: 1) Y = +√x - арифметический корень (синяя ветвь) Область определения - Dx = Х∈[0;+∞) - не отрицательный. Область значений - Ey = Y∈[0;+∞) - не отрицательные и 2) Y = - √x - алгебраический корень (красная ветвь).- мнимые значения функции - отрицательные.
Объяснение:
Для того, чтобы найти решение системы:
3x + 8y = 13;
5x - 16y = 7,
нам удобнее всего будет применить метод сложения. Рассмотрев оба уравнения мы видим, что перед переменной y в обеих уравнениях мы можем сделать взаимно противоположными коэффициенты.
Умножаем на 2 первое уравнение системы:
6x + 16y = 26;
5x - 16y = 7.
Сложим два уравнения системы:
6x + 5x = 26 + 7;
8y = 13 - 3x;
Решим первое уравнение:
6x + 5x = 33;
11x = 33;
x = 33 : 11;
x = 3.
Система уравнений:
x = 3;
y = (13 - 3 * 3)/8 = (13 - 9)/8 = 4/8 = 1/2.