№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
Объяснение:
на рисунке я все обозначила.
единичная окружность - это тригонометрическая окружность с центром в точке (0;0)
теперь у нас есть точка Р₀ (-3/5; 4/5)
нарисуем эту точку
теперь мы должны знать, что ось ох у нас является осью косинусов.
т.е. проекция точки на ось ох Р₀х есть cosα, или по другому координата х точки Р₀ есть cosα
в нашем случает cosα = -3/5
дальше ось оy - это ось синусов, т.е. проекция точки на ось оу Р₀у есть sinα, или по другому координата y точки Р₀ есть sinα
в нашем случает sinα = 4/5
тогда
для второй точки я уже расписывать не буду, на рисунке я ее "разрисовала" P₀ (-1/2; -√3/2)
cosα = -1/2
sinα = -√3/2
tgα = √3
сtgα = 1/√3=√3/3
для этой точки можно легко все проверить, потому что она обозначает угол в 240°