1)
а) Д= 25+96=121
x1= (-5+11)/2=3
х2= (-5-11)/2=-13
б) Д= 361+168=529
х1= (19+23)/6=7
х2=(19-23)/6= 4/6
2)a) x^2 -14x +49 = (x-7)^2
б) x^2 + 5x -6 = (x+5)^2 -5x -31
в)
3)x^2 -4x +31>0
Д=16-4*31 < 0 => нету пересечения с осью ox, т.к. ветви вверх, то всегда >0
б) 9x^2 +24x +16
Д= 576-576=0 => 1 т. пересечения с осью ox, ветви вверх => >=0
5) 4x^2 -x = x(4x-1)
б) x^2 +7x+10
Д=49-40=9
x1= -7+3/8= -1/2
x2= -5/4
x^2+7x+10=(x+1/2)(x+5/4)
В) 5x^2 - 7x +2
Д= 49-40=9
x1 = 7+3/10=1
x2= 7-3/10= 4/10=0,4
5x^2 - 7x +2 = 5(x-1)(x-0,4) про 5 не уверен
Г) -2x^2-9x-9=2x^2 + 9x +9
Д=81-72=9
x1= -9-3/4=-3
x2=-9+3/4= -6/4
2x^2 + 9x + 9 = 2(x+3)(x+6/4) про 2 не уверен :C
z=ln(x+e^(-y))
dz/dx=1/(x+e^(-y))*(x+e^(-y))'=1/(x+e^(-y))
d2z/dx2=((x+e^(-y))^(-1))'=-(x+e^(-y))^(-2)*(x+e^(-y))'=-1/(x+e^(-y))^2
d3z/dx2dy=(-(x+e^(-y))^(-2))'=-(-2(x+e^(-y)))^(-3)*(x+e^(-y))'=2(x+e^(-y))^(-3)*(-e^(-y))=-2e^(-y)/(x+e^(-y))^3
dz/dy=1/(x+e^(-y))*(x+e^(-y))'=1/(x+e^(-y))*(-e^(-y))=-e^(-y)/(x+e^(-y))
d2z/dydx=(-e^(-y)*(x+e^(-y))^(-1))'=-e^(-y)*((x+e^(-y))^(-1))'=
-e^(-y)*(-((x+e^(-y))^(-2)))*(x+e^(-y))'=e^(-y)/(x+e^(-y))^2
d3z/dydx2=(e^(-y)/(x+e^(-y))^2)'=e^(-y)((x+e^(-y))^(-2))'=
e^(-y)*(-2((x+e^(-y))^(-3)))*(x+e^(-y))'=-2e^(-y)/(x+e^(-y))^3
и все
-2e^(-y)/(x+e^(-y))^3-(-2e^(-y)/(x+e^(-y))^3)=-2e^(-y)/(x+e^(-y))^3+2e^(-y)/(x+e^(-y))^3=0
Объяснение: