(х -7)² + 2 имеет наименьшее значение в том случае, когда выражение (х - 7)² = 0, т.е при х = 7.Тогда наименьшее значение выражения (х-7)²+2 будет 2, так как 0+2=2.
1) (7 - x)(7 + x) + (x + 3)^2 = 49 - x^2 + x^2 + 6x + 9 = 6x + 58 2) а) б) 3) y = 6 - 2x а) График сам строй, это прямая, проходящая через точки (0, 6) и (3, 0) б) Подставим x = -10 и найдем y = 6 - 2(-10) = 6 + 20 = 26 ответ: нет, через точку M(-10, 25) график не проходит. 4) Мастер за 1 час может изготовить x деталей, а ученик 17-x деталей. Мастер за 4 часа сделал 4x деталей, а ученик за 2 часа 2(17-x) деталей. 4x + 2(17 - x) = 54 4x + 34 - 2x = 2x + 34 = 54 2x = 20 x = 10 - деталей в час делает мастер. 17 - x = 17 - 10 = 7 - деталей в час делает ученик. 5) а) б)
Иррациональное число - это число, не являющееся рациональным, то есть такое, которое нельзя представить в виде отношения двух целых чисел.
Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1.
Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел.
Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью.
Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж.
наименьшее значение равно 2.
любое число в квадрате есть число не отрицательное, то есть
или больше нуля или равно нулю. если мы к двум прибавим число не отрицательное, то получим число равное двум или число, которое больше двух.
ответ: два