М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
НаСтЯ5856
НаСтЯ5856
24.05.2022 11:42 •  Алгебра

X²-6x>0 розв'язати нерівність

👇
Открыть все ответы
Ответ:
bockovickof
bockovickof
24.05.2022
По формуле a^2 + 2ab + b^2 = ( a+b)^2 свернём  x^2+6x+9
Получим 
(x - 1)*(x + 3)^2 - 5*(x + 3) =  0 
Выносим общий множитель, имеем
( x + 3)*( (x - 1)*( x + 3) - 5) = 0 
Аккуратно раскрываем скобки, приводим подобные 
( x + 3)*( x^2 + 3x - x - 3 - 5) = 0
( x + 3 )*( x^2 + 2x - 8) = 0
Приравниваем каждое к нулю и решаем отдельно
(1) 
x + 3 = 0 
x₁ = - 3 

(2)
x^2 + 2x - 8 = 0 
Решим квадратное уравнение через дискриминант 
D = b^2 + 4ac = 4 + 4*8 = 36 = 6^2 > 0 
x₂ = ( - 2 + 6)/2 = 4/2 = 2;
x₃ = ( - 2 - 6)/2 = - 8/2 = - 4;

ответ :
- 4; - 3; 2 
4,7(35 оценок)
Ответ:
1)log2(x^2)< log2(6x+27)

ОДЗ:
{x^2>0; x e R, но х не равен нулю
{6x+27>0; 6x>-27; x>-4,5
x e (-4,5; 0) U (0; + беск.)

x^2<6x+27
x^2-6x-27<0
x^2-6x-27=0
D=(-6)^2-4*1*(-27)=144
x1=(6-12)/2=-3;  x2=(6+12)/2=9
+(-3)-(9)+

x e (-3; 9)
С учетом ОДЗ: x e (-3;0)U(0;9)
ответ: -2
2) log7(log3(log3(x)))<=0

ОДЗ:
log3(log3(x))>0
log3(log3(x))> log3(1)
log3(x)>1
log3(x)>log3(3)
x>3

log7(log3(log3(x))) <=log7(1)
log3(log3(x))<=1
log3(log3(x))<=log3(3)
log3(x)<=3
log3(x)<=log3(27)
x<=27
С учетом ОДЗ: x e (3; 27]
Неравенству удовлетворяют 24 значений.
4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ