1)10 (км/час) - скорость на велосипеде.
2)8 (см) - длина основания;
10 (см) - длина боковой стороны.
Объяснение:
1. Турист преодолел расстояние в 29 км. 2 часа он ехал на велосипеде,
затем 3 часа шёл пешком. Скорость на велосипеде больше скорости
пешком на 7 км. Найти скорость движения на велосипеде.
х - скорость пешком
х+7 - скорость на велосипеде
3*х - путь пешком
(х+7)*2 - путь на велосипеде
По условию задачи весь путь 29 км, уравнение:
3х+2(х+7)=29
3х+2х+14=29
5х=29-14
5х=15
х=15/5
х=3 (км/час) - скорость пешком
3+7=10 (км/час) - скорость на велосипеде.
2 Периметр равнобедренного треугольника 28 см. Боковая сторона
на 2 см больше основания . Найти стороны РАВНОБЕДРЕННОГО
треугольника.
х - длина основания
х+2 - длина боковой стороны
Периметр треугольника - это сумма длин всех сторон треугольника. Так как треугольник равнобедренный, в нём боковые стороны равны.
По условию задачи периметр треугольника 28 см, уравнение:
х+2(х+2)=28
х+2х+4=28
3х=28-4
3х=24
х=24/3
х=8 (см) - длина основания
8+2=10 (см) - длина боковой стороны.
Чтоб проверить проходит ли график уравнения через точку, нужно, значение точки подставить в уравнение.
а) А(3; 1), 3х + 4у = 2,
3 * 3 + 4 * 1 = 2;
9 + 4 = 2;
13 ¥ 2. (¥ - не равно)
Значит, график уравнения не проходит через данную точку.
б) В(2; 1), 3х + 4у = 2,
3 * 2 + 4 * 1 = 2;
6 + 4 = 2;
10 ¥ 2.
Значит, график уравнения не проходит через данную точку.
в) С(- 2; - 2), 3х + 4у = 2,
3 * (- 2) + 4 * (-.2) = 2;
- 6 - 8 = 2;
- 14 ¥ 2.
Значит график уравнения не проходит через данную точку.
ответ: точки не принадлежат графику