Объяснение:
1. 5(2×0,6+1)-3=5(1,2+1)-3=5×2,2-3=11-3=8
2.а) 5х^3×(-2х^2)=-10х^5
б) 2а-(6в-а)+(6в-2а) = 2а-6в+а+6в-2а=а
в)(3x - 1)(3x + 1) + - (3x + 1)^2 = 9x^2 + 1 - 9x^2 + 6x + 1 = 6x + 2
г)(2х^3у)^3=8х^9у^3
3. а)2ху-6у^2=2у(х-3у)
б) а^5-4а^3=а^3(а^2-4)
в) а^3-2а^2+18-9а=а^2(а-2)+9(2-а)
4. а) 4(2-4х)=3-6х
8-16х=3-6х
-16х+6х=3-8
-10х=-5
х=-5÷(-10)=0,5
б) (х-1)(х+7)=0
х^2+7х-х-7=0
х^2 +6х-7=0
за теоремой Виета
х1+х2=-6
х1×х2= -7. х1=-7. х2=1
в) 2у^2-18=0
2у^2=18
у^2=9
у=3;у=-3
5. 1 день -х
2 день - х-10
3 день - х-10-5
х+х-10+х-10-5= 50
3х -25=50
3х=75
х= 25
1день 25км
2 день 15км
3день 10км
task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.