Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
План действий: 1) ищем производную 2) приравниваем к нулю, решаем получившееся уравнение 3) определяем, какие корни попадают в указанный промежуток 4) ищем значение функции на концах промежутка и в точке, 5) выбираем наибольший ответ Начали. 1)Производная = 6/Cos²x - 6 2) 6/Cos²x - 6 =0 6/Cos²x = 6 Cos²x = 1 а) Cos x = 1 б) Cos x = -1 x = 2πk, где k∈Z x =πn,где n∈Z 3) Из этих ответов в указанный промежуток попадает только х =0 4) у = 6tg 0 - 6·0 +6 = 6 y = 6tg (-π/4) - 6·π/4 +6= -6 -6π/4 +6 = -3π/2 5) у =6
1)y'=d/dx(2x²)-d/dx(x)
y'=2•2x-1
y'=4x-1-ответ
2)y'=1tan(x)+x•sec(x)²
y'=cos(x)sin(x)+x/cos(x)²-ответ
3)
y'=34/(5x+8)² - ответ
4)y'=cos(g)•5
y'=cos(5x-2)•5
y'=5cos(5x-2)-ответ