График функции является параболой.
Основные точки параболы обозначим как: точка А - вершина параболы; B и С - точки пересечения с осью X; D - точка пересечения с осью Y.
Точка А - вершина параболы:
Вершина по оси x параболы по формуле -b/2a: -8/2=-4
Вершина по оси y подстановкой x: 16-32+7= -9
Координаты А(-4;-9)
Точки В и С - пересечение c осью X
Очевидно, что раз точки лежат на оси X, то координата y равна 0, поэтому решаем квадратное уравнение. По теореме Виета корни: -1 и -7.
Следовательно, координаты B(-1;0) и C(-7;0)
Точка D - пересечение с осью Y
Аналогично нахождению точек B и С, координата x равна 0. Подставим в функцию и найдём координату y: 0+0+7=7
Координаты D(0;7)
Для наглядности прикрепляю к ответу график функции.
пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км