1)
1) Умножим обе части. = 3(х-1)-2(х+1)=6
2) Раскроем скобки. = 3х-3-2(х+1)=6 -> 3х-3-2х-2=6
3) Вычислим. = х-3-2=6 -> х-5=6
4) Переносим (-5) вправо. = х=6+5
5) Вычисляем и получаем: х = 11
ответ: х=11
2)
1) Раскроем скобки. = 2-х-2х+х(2)=(х+3)*(х-4) -> 2-х-2х+х(2)=х(2)-4х+3х-12
2) Уберём равные числа. = 2-х-2х=-4х+3х-12
3) Вычислим. = 2-3х=-4х+3х-12 -> 2-3х=-х-12
4) Переносим лишние числа (х) и (2) влево. = -3х+х=-12-2
5) Вычисляем. = -2х=-12-2 -> -2х=-14
6) Разделяем и получаем: х=7
ответ: х = 7
Разбор (2) после х, (2) означает степень.
Запишем уравнение параболы в виде y=a*x²+b*x+c. Подставляя в это уравнение координаты точек A и B, получаем систему уравнений:
16*a-4*b+c=0
4*a+2*b+c=36
Кроме того, так как абсцисса вершины параболы Xa удовлетворяет уравнению Xa=-b/(2*a), то к этим двум уравнениям добавляется третье: -4=-b/(2*a), или b=8*a. Подставляя это выражение в два первых уравнения, приходим к системе:
-16*a+c=0
20*a+c=36
Решая её, находим a=1 и c=16. Тогда b=8 и уравнение параболы принимает вид: x²+8*x+16=0. ответ: x²+8*x+16=0.
b3 = 5 * 2 * 2 = 20
b8 = 5 * 2^7 = 640
S8 = 635 + 640 = 1275