М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vlad22803
vlad22803
12.03.2022 07:47 •  Алгебра

7. Розв'яжіть рівняння (х – 2)(х + 3) — (х – 1)(х + 2) = 0. Запишіть окремо відповідь.

👇
Открыть все ответы
Ответ:
dary090
dary090
12.03.2022
Задание 1.
Ранжированный ряд: 157, 160, 160, 161, 162, 162, 165, 165, 165, 165, 165, 168, 169, 170, 170, 170, 171, 173, 173, 174, 175, 177, 177, 182, 182, 186.
Средний рост: (157 + 160 + 160 ++ 186) : 26 ≈ 169
Мода ряда: 165
Медиана ряда: (170 + 175) : 2 = 172,5

Задание 2.
Среднее арифметическое: (100 000 + 4 * 20 000 + 20 * 10 000) : 25 = 15200
Мода ряда: 10 000
Медиана ряда: (10 000 + 10 000) : 2 = 10 000
В рекламных целях выгоднее всего использовать среднее арифметическое ряда.

Задание 3.
Сумма чисел старого ряда равна 7 * 10 = 70.
Новый ряд состоит из 10 + 2 = 12 чисел.
Среднее арифметическое нового ряда: (70 + 17 + 18) : 12 = 8,75
4,8(47 оценок)
Ответ:
14251714
14251714
12.03.2022

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

4,6(93 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ