М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
izmoksi
izmoksi
13.12.2022 15:30 •  Алгебра

Звести до стандартного вигляду многочлена
14х³+(11х-3х²-3(2х²-1)

👇
Открыть все ответы
Ответ:
hjhytu
hjhytu
13.12.2022

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Ответ:
vikaganzha
vikaganzha
13.12.2022

√cos2x=1+2sinx,   ООФ: cos2x≥0 и 1+2sinx≥0

cos2x=(1+2sinx)², но есть формула cos2x=1-2sin²x

1-2sin²x=1+4sinx+4sin²x,    4sinx+6sin²x=0,    2sinx( 2+3sinx)=0,

sinx=0,    x=πn,n∈Z

2+3sinx=0, sinx=-2/3, x=(-1)^n * arcsin(-2/3)+πn=(-1)^(n+1) *arcsinx+πn,n∈Z

 2)   х+3-4√(х-1)=(2-√(х-1))²

        х+8-√(х-1)=(3-√(х-1))²

Тогда, зная, что √х²=|x|, получим

|2-√(х-1)|+|3-√(x-1)|=1,  Обозначим √(х-1)=t,

|2-t|+|3-t|=1

Отметим на числ. оси точки, где модули обращаются в 0:   2 3 .

Подсчитаем знаки (2-t) и (3-t) в каждом промежутке.Для ппервого:  +,+,-.

 Для второго -,-,+. Рассм. три случая  при раскрытии модулей:

а)(-∞,2]   2-t+3-t=1, t=2, √(x-1)=2, x-1=4, x=5 не подходит, т.к. 5∉(-,2)

б)(2,3]    2-t-3+t=1,   -2=1   неверно

 в) (3,∞0  -2+t-3+t=1,  2t=6, t=3, √(x-1)=3, x-1=9, x=10

ответ: 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4,4(30 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ