Объяснение:
1) Положим, существует такое число, которое может выразиться несократимой дробью , при этом p - целое, q - натуральное, которое удовлетворяет соотношению:
Из этого следует, что p², и p делятся на 3. Тогда p можно представить как 3c, тогда уравнение перепишется в виде:
Отсюда следует, что и q делится на 3, а это противоречит условию несократимости дроби изначально. Следовательно на множестве рациональных чисел решений нет.
2) UPD: решается так же, немного не тот путь указал.
p² и p делятся на 21, значит p представимо в виде p = 21c
Тогда:
Стало быть, q тоже делится на 21, условие о несократимости дроби p/q нарушена, и значит решений нет на рациональном множестве
Пусть х км/ч - скорость течения реки, тогда (18 + х) км/ч - скорость катера, идущего по течению реки, (16 - х) км/ч - скорость катера, идущего против течения реки. Катер, идущий по течению до встречи (18 + х) · 1,5 км, а катер, идущий против течения до встречи (16 - х) · 0,5 км. Так как по условию задачи расстояние между пристанями 37 км и катера встретились, то вместе они расстояние (18 + х) · 1,5 + (16 - х) · 0,5 км, что составляет 37 км. Решим уравнение:
(18 + х) · 1,5 + (16 - х) · 0,5 = 37
27 + 1,5х + 8 - 0,5х = 37
1,5х - 0,5х = 37 - 27 - 8
х = 2
ответ: 2 км/ч.