![\frac{2}{ \sqrt[3]{4} }](/tpl/images/4721/5562/9e3ce.png)
![\displaystyle\bf\\\frac{2}{\sqrt[3]{4} } =\frac{2\cdot\sqrt[3]{2} }{\sqrt[3]{4} \cdot\sqrt[3]{2} } =\frac{2\cdot\sqrt[3]{2} }{\sqrt[3]{4\cdot2} }=\frac{2\cdot\sqrt[3]{2} }{\sqrt[3]{2^{3} } }=\frac{2\cdot\sqrt[3]{2} }{2}=\sqrt[3]{2}](/tpl/images/2095/2496/29c29.png)
![\displaystyle \tt \frac{2}{ \sqrt[3]{4} } = \frac{2}{ \sqrt[3]{2 {}^{2} } } = \frac{2}{ \sqrt[3]{2 {}^{2} } } \cdot \frac{ \sqrt[3]{2} }{ \sqrt[3]{2} } = \frac{2 \sqrt[3]{2} }{ \sqrt[3]{2 {}^{2} } \sqrt[3]{2} } = \frac{2 \sqrt[3]{2} }{ \sqrt[3]{2 {}^{2} \cdot2 } } = \frac{2 \sqrt[3]{2} }{ \sqrt[3]{2 {}^{3} } } = \frac{ \not2 \sqrt[3]{2} }{ \not2} = \sqrt[3]{2} .](/tpl/images/2095/2496/3cf32.png)
ответ:здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте
Объяснение:здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте здравствуйте
1. Найдите двенадцатый член и сумму первых двенадцати членов арифметической прогрессии (an), если a1 = 3, a2 = 7.
2. Найдите седьмой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = − и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии 27, −9, 3, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 6,4, если a1 = 3,6 и d = 0,4.
5. Какие два числа надо вставить между числами 2 и −54, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 2x − 1, x + 3 и x + 15 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 7, которые больше 100 и меньше 200.
Вариант 2
1. Найдите восьмой член и сумму первых восьми членов арифметической прогрессии (an), если a1= 1, a2 = 4.
2. Найдите четвёртый член и сумму первых пяти членов геометрической прогрессии (bn), если b1 = и q = 3.
3. Найдите сумму бесконечной геометрической прогрессии −64, 32, −16, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 3,6, если a1 = 2,4 и d = 0,2.
5. Какие два числа надо вставить между числами 8 и −64, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 3x − 2, x + 2 и x + 8 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 5, которые больше 150 и меньше 250.
Вариант 3
1. Найдите десятый член и сумму первых десяти членов арифметической прогрессии (an), если a1 = 2, a2 = 6.
2. Найдите третий член и сумму первых четырёх членов геометрической прогрессии (bn), если b1 = − и q = 5.
3. Найдите сумму бесконечной геометрической прогрессии −4, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 4,9, если a1 = 1,4 и d = 0,5.
5. Какие два числа надо вставить между числами 4 и −108, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 3, x + 4 и 2x − 40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 9, которые больше 120 и меньше 210.
Вариант 4
1. Найдите седьмой член и сумму первых семи членов арифметической прогрессии (an), если a1 = 5, a2 = 11.
2. Найдите шестой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии −6, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 8,9, если a1 = 4,1 и d = 0,6.
5. Какие два числа надо вставить между числами 3 и −192, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 7, x + 5 и 3x + 1 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 11, которые больше 100 и меньше 180.
Объяснение: