1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
1) -7x²-(8x²+3x+6) = -7х²-8х²-3х-6 = -15х²-3х-6
2) 13(x²-4x+1)+(5x²+6x+1) = 13х²-52х+13+5х²+6х+1=18х²-46х+14