составьте выражение для нахождения площади прямоугольника, ответ запишите в стандартном виде, если его измерения выражены следующими величинами: длина 4a⁵b² ширина 6ab³
Решим задачу на нахождение времени, скорости, расстояния Дано: S=140 км v₁=v₂+6 км/час t₁=t₂ - 3 ч Найти: v₂=? км/час Решение 1) Пусть скорость второго велосипедиста равна v₂=х км/час, тогда скорость первого составляет v₁=v₂+6=x+6 км/час. Первый велосипедист проехал на 3 часа меньше второго и всего был в пути: t(время)=S(расстояние)÷v(скорость) = 140/(х+6) часов. Второй велосипедист затратил на 3 часа больше и был в пути: 140/х часов. Составим и решим уравнение: 140/х - 140/(х+6)=3 (умножим все члены на х(х+6), чтобы избавиться от дроби) 140×х(х+6)/х - 140×х(х+6)/(х+6)=3×х(х+6) 140(х+6)-140х=3х²+18х 140х+840-140х=3х²+18х 3х²+18x-840=0 D=b²-4ac=18²-4×3×(-840)=324+10080=10404 (√D=102) х₁=(-b+√D)/2a=(-18+102)/2×3=84/6=14 (км/час) х₂=(-b -√D)/2a=(-18-102)/2×3=-120/6= - 20 (х₂<0 - не подходит) Значит скорость второго велосипедиста, пришедшего к финишу вторым (на 3 часа позже) составляет 14 км/час. ОТВЕТ: скорость велосипедиста, пришедшего к финишу вторым равна 14 км/час.
Для решения надо вспомнить два полезных наблюдения. I. Сумма иррационального и рационального чисел - иррациональное число. II. Произведение рационального числа, не равного нулю, на иррациональное число - иррациональное число. (Оба наблюдения доказываются от противного, в итоге придем к противоречию: в первом случае иррациональное слагаемое - разность двух рациональных чисел, во втором - иррациональный сомножитель представляется в виде частного рациональных чисел).
Решение. 1) a - 2b = (a + b) - 3b - иррационально как сумма рационального по условию числа a+b и иррационального по наблюдению II числа (-3)*b 2) a^2 - ab - 2b^2 = a^2 + ab - 2ab - 2b^2 = a(a + b) - 2b(a + b) = (a + b)(a - 2b) - иррационально как произведение рационального ненулевого по условию числа a+b и иррационального по доказанному числу a-2b.
Дано:
S=140 км
v₁=v₂+6 км/час
t₁=t₂ - 3 ч
Найти:
v₂=? км/час
Решение
1) Пусть скорость второго велосипедиста равна v₂=х км/час, тогда скорость первого составляет v₁=v₂+6=x+6 км/час.
Первый велосипедист проехал на 3 часа меньше второго и всего был в пути: t(время)=S(расстояние)÷v(скорость) = 140/(х+6) часов.
Второй велосипедист затратил на 3 часа больше и был в пути: 140/х часов.
Составим и решим уравнение:
140/х - 140/(х+6)=3 (умножим все члены на х(х+6), чтобы избавиться от дроби)
140×х(х+6)/х - 140×х(х+6)/(х+6)=3×х(х+6)
140(х+6)-140х=3х²+18х
140х+840-140х=3х²+18х
3х²+18x-840=0
D=b²-4ac=18²-4×3×(-840)=324+10080=10404 (√D=102)
х₁=(-b+√D)/2a=(-18+102)/2×3=84/6=14 (км/час)
х₂=(-b -√D)/2a=(-18-102)/2×3=-120/6= - 20 (х₂<0 - не подходит)
Значит скорость второго велосипедиста, пришедшего к финишу вторым (на 3 часа позже) составляет 14 км/час.
ОТВЕТ: скорость велосипедиста, пришедшего к финишу вторым равна 14 км/час.
Проверим:
140÷14=10 (часов) - 2-ый велосипедист
140:(14+6)=140÷20=7 (часов) - 1-ый влосипедист
10-7=3 часа разницы